
Properties of Sound 
 
Goals and Introduction 
 
Traveling waves can be split into two broad categories based on the direction the oscillations 
occur compared to the direction of the wave’s velocity. Waves where the oscillations are 
perpendicular to the wave’s velocity are called transverse waves, whereas waves with 
oscillations parallel to the wave’s velocity are called longitudinal waves. Sound waves are 
longitudinal waves.  
 
Though we cannot plot a longitudinal wave at a moment in time (like we can for the transverse 
wave), it is still true that this periodic object causes there to be oscillations as it travels from one 
location to another. The frequency (f) of these oscillations depends on the speed (v) of the wave, 
and the wavelength (λ), just as it would for a transverse wave. 
 
ݒ ൌ  (Eq. 1)  ߣ݂
 
The wavelength for a transverse wave can be thought of as the distance between the crests of the 
wave. Here, regions where the air molecules are very spread out at a particular moment can be 
thought of as being like the crests of the longitudinal wave, and the distance between these at any 
moment would be the wavelength. 
 
Sounds that we hear are the result of the vibration of materials that push the air, creating a 
periodic oscillation of pressure and movement of air. We hear sound as our ear feels the 
oscillations of pressure and works to send the information from the environment to our brain. 
You might be interested to know that the mechanisms by which we interpret the pitch of a sound, 
for example, are very complex and not completely understood to this day (there are a few 
competing theories).  
 
Most objects, when plucked or struck so that they vibrate, will create a sound wave that can be 
thought of as a combination of many sound waves, each with a different frequency and 
amplitude. There is no one pattern, or mathematical relationship uniting this entire set of 
frequencies. These can be called complex objects. Other objects, when set into vibration will also 
produce a sound wave that is made up of many frequencies, but unlike complex objects, there is 
a single underlying mathematical relationship between the frequencies. These can be called 
harmonic objects. Lastly, some objects will vibrate with only one frequency, when used 
properly. These can be called simple objects.  
 
A useful mathematical tool for determining the frequencies present within a sound is Fourier 
Analysis. This technique is very useful for pattern recognition and is applied with the aide of 



computers in forensics, materials science, biology, chemistry, geology, and of course, physics. 
Here, it can be used to create a plot of frequencies present within a sound wave produced by a 
vibrating object and measure the comparative amplitude, or amount, of each component 
frequency. 
 
An example of a simple object is the tuning fork. This device is designed to vibrate ideally at 
only one frequency, and has a number of uses – one being that it can certainly aide in the tuning 
of a musical instrument. When struck, the tines of the fork have a particular frequency with 
which they will vibrate back and forth, pushing air, and creating a sound wave. 
 
There are many kinds of harmonic objects, each capable of producing a harmonic set of 
frequencies, in surprisingly different ways. One example is a tube that is open at both ends. 
When the tube is struck, the air inside the tube is set into oscillation, and sound waves travel 
back and forth across the tube, interfering with each other. At the ends of the tube, the air is 
allowed to vibrate back and forth as much as it wants, since there is no wall to prevent it from 
doing so. This means that the maximum and minimum of the sound wave’s air movement are 
able to happen there. Given that the tube has a certain length, L, there are particular wavelengths 
of sound that would fit perfectly in the tube, actualizing these boundary conditions on both sides. 
The result of the interference of the sound waves traveling back and forth in the tube is a set of 
harmonic wavelengths given by the following formula: 
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 where n = 1, 2, 3, …  (Eq. 2) 

 
An examination of each harmonic wavelength reveals nodes, places where the air doesn’t move 
at all, and antinodes, places where the maximum oscillation of air can occur. Note that the ends 
of the open tube are both antinodes! Each of these harmonics is called a standing wave mode of 
oscillation, because in any particular mode, the locations of these nodes and antinodes are fixed. 
If you check another mode, it will have a different set of nodes and antinodes, but they too will 
remain at fixed locations. 
 
Because the waves that make up these standing wave modes are traveling sound waves in air, 
they move with a speed equal to that of sound in air, and it is possible to determine a harmonic 
frequency for each standing wave mode of oscillation using the harmonic wavelength for that 
mode and ݒ ൌ  .The result is seen in Eq. 3, for a tube that is open at both ends .ߣ݂
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 where n = 1, 2, 3, …  (Eq. 3) 

 
The story for standing waves in the tube changes if we place a cap over one end. We have then 
changed the boundary condition on one end of the tube, where the cap prevents the air from 
moving. This means there is a node on the capped end now, and an antinode on the open end. 



The result of the interference of the sound waves traveling back and forth in the tube is again a 
set of harmonic wavelengths but given by the following formula: 
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 where n = 1, 3, 5, …  (Eq. 4) 

 
Again, because the waves that make up these standing wave modes are traveling sound waves in 
air, they move with a speed equal to that of sound in air, and it is possible to determine a 
harmonic frequency for each standing wave mode of oscillation using the harmonic wavelength 
for that mode and ݒ ൌ  .The result is seen in Eq. 5, for a tube that is open at both ends .ߣ݂
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 where n = 1, 3, 5, …  (Eq. 5) 

 
You may want to read more at Dr. Daniel Russell’s website, where he illustrates many of these 
principles among other wave behaviors. 
(http://www.acs.psu.edu/drussell/Demos/StandingWaves/StandingWaves.html) 
 
In today’s lab, you will experience and measure the sound produced by a tuning fork, a tube 
open at both ends, and a tube closed at one end and open at the other. This will be accomplished 
by describing what you hear, and by analyzing the frequencies present within the sound 
produced by each object. You will also experience the nodes and antinodes of a standing wave 
that is continually driven within a tube. 
 
Goals: (1) Experience and describe effects of sounds from various sources 

(2)  Predict, measure, and quantify the frequencies present in a tube open at both ends 
(3) Predict, measure, and quantify the frequencies present in a tube closed at one end 
 

 
Procedure 
 
Equipment – tuning fork, mallet, tube with removable cap, meter stick, Kundt’s tube standing 
wave apparatus with listening tube, audio oscillator, microphone, computer with the DataLogger 
interface and LoggerPro software 
 
1) Open LoggerPro by clicking on the Tones link on 
http://feynman.bgsu.edu/physics/phys2020/index.html 
 
2) You should see a split window where the top window will show you a graph of the relative 
pressure experienced by the microphone diaphragm as a function of time, while the bottom 
window will show you a plot of the Fourier transform of recorded sounds, plotting intensity 



versus frequency. When you hit the green button, the microphone will record sound for a brief 
moment and then display the results. 
 
3) Have one person hold the tuning fork at its base and strike it with the mallet near the center of 
one of the tines of the fork. After the fork is struck and vibrating, the other person should hold 
the microphone near the tine of the tuning fork and hit the green button on the screen, in order to 
record the sound. You should see a waveform that looks like a sine, or cosine, wave. If you do 
not, try repeating this process. 
 
4) When you click on a graph and float the cursor over any location on the graph, you will see 
the coordinates of the cursor displayed in the corner of the graph window. Use the cursor to find 
the peak frequency, as shown in the Fourier transform (the bottom graph). Record the peak 
frequency, and make note of any other frequencies you see present.  
 
5) Click on the top graph and record the time coordinates for two adjacent peaks in the 
waveform. This can be used later to calculate the period of the wave. 
 
6) Look at the tuning fork and identify the accepted value of the frequency produced by the 
tuning fork. Record this value. 
 
7) Now, measure and record the length of the colored tube. Be sure that both ends of the tube 
are open (remove the cap if necessary). 
 
8) Have one person hold the tube and prepare to strike it with the mallet. The other person should 
hold the microphone near an open end of the tube and then hit the green button to record sound. 
As soon as the person hits record on the screen, the person holding the tube should strike it with 
the mallet to cause it to vibrate. Ideally, you should see a Fourier transform with several equally 
spaced peaks. When you feel you have accurately sampled the sound from the tube, record the 
frequencies that you observe in the Fourier transform. 
 

NOTE: It may take several trials to get a good pattern. Be sure to strike the tube AFTER the 
person operating the computer has hit the green button to record. This will help ensure that you 
sample at a volume sufficient to stand above the ambient noise. 

 
Question 1: Suppose that you used a different tube with a smaller length, and that the tube is still 
open at both ends. What would you expect to be different about the observed frequencies in the 
Fourier transform? Explain your answer. 
 



9) Place the cap on one end of the colored tube. Measure and record the length of the tube with 
the cap on one end. Repeat the procedure in step 8, and record the frequencies that you observe 
in the Fourier transform. 
 
10) Now, we will use the Kundt’s tube to observe the existence of a standing wave pattern in a 
tube when it is driven at a particular frequency. The lab instructor will set the audio oscillator to 
produce a particular frequency. Record the value given to you by the instructor. Plug the 
electrical wire leads coming off the tube into the BLUE terminals on the wall of the lab station. 
 
11) The listening tube will allow you to sample and listen to the wave created in the Kundt’s 
tube, ideally without interfering with its vibration. Remember that the Kundt’s apparatus is 
basically a tube that is closed at one end and open at the other. Predict what you will hear 
through the listening tube if you begin with the tube pushed all the way in and then slowly slide 
it along the length of the tube towards the other end.  
 
12) Begin with the listening tube pushed all the way in and then slowly slide it along the length 
of the tube while listening to the loose end of the listening tube. Describe your observations. 
 
Question 2: How would your observations change if the instructor doubled the input frequency 
for the Kundt’s tube? Explain and describe what would be different, and why. 
 
13) The loudest locations in the Kundt’s tube represent the locations of antinodes, or maximum 
oscillation of air, in the standing wave pattern being created in the tube. The distance between 
two antinodes is half a wavelength of the standing wave patter. Measure and record the 
distance between two antinodes in the Kundt’s tube apparatus. 
  
As always, be sure to organize your data records for presentation in your lab report, using tables 
and labels where appropriate. 
 
 
Data Analysis 
 
Use the times you recorded in step 5 to find the period of the tuning fork’s vibration. Then, use 
this to calculate a frequency for the vibration. 
 
For the tube open at both ends, used in steps 7 and 8, use the length of the tube to determine the 
expected fundamental wavelength, and the next three harmonic wavelengths. 
 
Examine the list of frequencies you recorded from step 8, for the tube open at both ends. Identify 
and label the fundamental frequency and each successive harmonic frequency that you observed. 



 
Use the harmonic wavelength and the harmonic frequency to calculate a value for the speed of 
sound in air for the tube open at both ends. Repeat this process for each harmonic mode of 
oscillation for which you have both a frequency and a wavelength. 
 

NOTE: While you have calculated four harmonic wavelengths in total, you may not have 
observed four peaks in the Fourier transform, and thus, may not have a frequency to pair with 
each wavelength. 

 
Compute a mean value for these speeds. 
 
For the tube open at one end and closed at the other, used in step 9, use the length of the tube to 
determine the expected fundamental wavelength, and the next three harmonic wavelengths. 
 
Examine the list of frequencies you recorded from step 9, for the tube open at one end and closed 
at the other. Identify and label the fundamental frequency and each successive harmonic 
frequency that you observed. 
 
Use the harmonic wavelength and the harmonic frequency to calculate a value for the speed of 
sound in air for the tube open at one end and closed at the other. Repeat this process for each 
harmonic mode of oscillation for which you have both a frequency and a wavelength. 
 
Compute a mean value for these speeds. 
 
Use the distance you found between antinodes in step 13 to calculate a wavelength for the 
standing wave mode in the Kundt’s tube. Then, use the frequency from step 10 and this 
wavelength to calculate the speed of sound in air for the Kundt’s tube. 
 
 
Error Analysis 
 
Compare the frequency you calculated from the period to that from the Fourier transform (step 4) 
by determining the percent difference between these two values. 
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Compare both the frequency from the Fourier transform of the tuning fork, and the frequency 
you calculated from the period of the tuning fork to the accepted value you recorded in step 6, by 
determining the percent error in each case. 
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Question 3: How well did the experimental values match the accepted frequency of the tuning 
fork? What aspects of the measurement process do you feel contributed most to the differences 
you have calculated here? 
 
Calculate the percent difference between the mean values of the speed of sound in air that you 
found for the tube open at both ends and the tube open at one end and closed at the other. 
 
Also, calculate the percent error with each of your mean values for speed and the accepted value 
for the speed of sound in air at standard temperature and pressure, 343 m/s. 
 
Finally, calculate the percent error for the speed of sound you found in the Kundt’s tube 
compared to the same standard, 343 m/s. 
 
Question 4: Explain the results of these examinations of the speed of sound in air and the 
percent differences and errors you have calculated. How well did the experimental values of 
speed compare in each case? How well did they compare to the accepted value of the speed of 
sound in air? What might explain differences observed? 
 
 
Questions and Conclusions 
 
Be sure to address Questions 1 through 4 and describe what has been verified and tested by this 
experiment. What are the likely sources of error? Where might the physics principles 
investigated in this lab manifest in everyday life, or in a job setting? 
 
 
 
 
 
Pre-Lab Questions 
 
Please read through all the instructions for this experiment to acquaint yourself with the 
experimental setup and procedures, and develop any questions you may want to discuss with 
your lab partner or TA before you begin.  Then answer the following questions and type your 
answers into the Canvas quiz tool for “Properties of Sound,” and submit it before the start of 
your lab section on the day this experiment is to be run. 



 
PL-1) Sequoia measures the wavelength of the sound in a Kundt’s tube to be 0.340 m. If the 
instructor tells her that the frequency driving the sound in the tube is 997 Hz, she will calculate a 
speed of sound in air of 
 
A) 2930 m/s 
 
B) 343 m/s 
 
C) She cannot calculate this with the available data 
 
D) 339 m/s 
 
 
PL-2) When Sequoia measured the sound from the tube open at one end and closed at the other, 
she only observed three, equally-spaced, peaks in the Fourier transform window, and thus 
recorded three frequencies. What are the values of the harmonic number, n, that correspond to 
these three peaks? 
 
A) n = 1, 2, and 3 
 
B) n = 1, 3, and 5 
 
C) n = 1, 2, and 4 
 
D) n = 0, 1, and 2 
 
 
 
 
 
 
 
 
 
 
 
 
 



PL-3) When Sequoia measured the sound from the tube open at one end and closed at the other, 
she only observed three, equally-spaced, peaks in the Fourier transform window, and thus 
recorded three frequencies (150 Hz, 450 Hz, and 750 Hz). If the length of the tube was 0.55 m, 
what would be the speed of sound that she would calculate using the fundamental frequency she 
measured? 
 
A) 273 m/s 
 
B) 330 m/s 
 
C) 165 m/s 
 
D) 343 m/s 
 
 
PL-4) When Sequoia measured the sound from the tube open at both ends, she only observed 
three, equally-spaced, peaks in the Fourier transform window, and thus recorded three 
frequencies (150 Hz, 450 Hz, and 750 Hz). If the length of the tube was 1.10 m, what would be 
the speed of sound that she would calculate using the fundamental frequency she measured? 
 
A) 273 m/s 
 
B) 330 m/s 
 
C) 165 m/s 
 
D) 343 m/s 
 
 
PL-5) When Sequoia measured the sound from the tube open at both ends, the Fourier transform 
plot looked very noisy and had a lot of peaks spread out all over the graph window. She should, 
 
A) just pick some of the peaks and move on with the next part of the lab. 
 
B) look over at another group’s data and just copy down the peaks they found for their tube. 
 
C) be sure she is striking the tube before her lab partner hits record, and try again. 
 
D) be sure she is striking the tube after her lab partner hits record, and try again. 
 


